Deploying Chatbots on AWS with Bedrock + Lex + Lambda

Introduction

Chatbots aren’t new. But GenAI-powered chatbots?

That’s a different ball game, especially when deployed securely, scalably, and serverlessly on AWS.

In this guide, we’ll show you how to build and deploy a production-grade chatbot on AWS using:

  • Amazon Lex for natural conversation flow
  • Amazon Bedrock for LLM responses
  • AWS Lambda for orchestration and custom logic

High-Level Architecture

SQL

User → Amazon Lex → AWS Lambda → Amazon Bedrock (Claude/Titan) → Response → Lex → User

Components Breakdown

Service Purpose
Amazon Lex Handles speech/text input, dialog state, slot-filling
AWS Lambda Orchestrates the call to Bedrock + post-processes the LLM output
Amazon Bedrock Generates answers from Claude, Titan, or other supported LLMs
IAM + VPC + KMS Enforces security, encryption, and isolation

Step-by-Step Deployment

1. Design Your Lex Bot

  • Define intents like askQuestion, checkStatus, etc.
  • Use slots only when necessary (e.g., name, email)
  • Connect the Fallback Intent to your Lambda function

2. Build the Lambda Function

This function should:

  • Accept the message from Lex
  • Construct a prompt (optionally include context)
  • Call Bedrock via the AWS SDK
  • Return a formatted response

Python

import boto3

bedrock = boto3.client('bedrock-runtime')

def lambda_handler(event, context):
user_input = event['inputTranscript'] prompt = f"Answer as a helpful assistant: {user_input}"

response = bedrock.invoke_model(
body=prompt.encode("utf-8"),
modelId="anthropic.claude-v2"
)

return {
"dialogAction": {
"type": "Close",
"fulfillmentState": "Fulfilled",
"message": {
"contentType": "PlainText",
"content": response.text
}
}
}

3. Connect Lex and Lambda

  • In the Lex console, go to Fulfillment
  • Attach the Lambda function to your intents
  • Test conversations in the Lex test window

4. Secure Your Deployment

  • Use KMS if storing user inputs
  • Use least-privilege IAM roles
  • Set Lambda timeouts and concurrency limits
  • Monitor with CloudWatch logs

Optional Enhancements

Feature Service
Memory/History DynamoDB or S3
Contextual Search OpenSearch or RDS (via embeddings)
UI Frontend Amazon Connect, React, or Slack integration
Output Control Bedrock Guardrails or prompt wrapping logic
Analytics CloudWatch Logs + Lex Analytics dashboard

Ideal Use Cases

  • Internal knowledge base assistant
  • HR or IT helpdesk chatbot
  • Customer FAQ bot
  • Lead qualification via conversational forms

Conclusion

You don’t need a full-stack AI team to build an intelligent chatbot.

With Lex + Bedrock + Lambda, AWS enables:

  • Natural, conversational interfaces
  • LLM-powered intelligence
  • Serverless deployment and security baked in

Fast to build. Easy to scale. Ready for production.

Shamli Sharma

Shamli Sharma

Table of Contents

Read More

Scroll to Top